

Compound Probability EXAMPLES

Decide whether the events are independent or dependent.

1. Each whole number from 1 through 10 is written on a piece of paper and placed in a hat. You randomly choose a piece of paper, do not put it back, then randomly choose another piece of paper.

EVENT A: Choose the 5 first.

EVENT B: Choose an odd number second.

Dependent Events

2. You flip a coin and roll a number cube.

EVENT A: Get tails when flipping the coin.

EVENT B: Get a 2 when rolling the number cube.

Independent Events

You spin a spinner that has 12 equal-sized sections numbered 1 to 12. Find each probability.

Tou spin a spinner that has 12 equal-sized sections numbered 1 to 12. I find each probability.						
no ovevlap	1. $P(3 \text{ or } 4)$ $\frac{1}{12} + \frac{1}{12} = \frac{2}{72} = \frac{1}{6}$	2. $P(\text{even or 7})$ $\frac{10}{12} + \frac{1}{12} = \frac{7}{12}$	no overlap			
no overlap	3. $P(\text{even or odd})$ $\frac{10}{12} + \frac{6}{12} = \frac{12}{12} = 1$	4. $P(\text{multiple of 3 or odd})$ $\frac{4}{12} + \frac{6}{12} - \frac{2}{12} = \frac{8}{12} = \frac{2}{3}$	overlap: 3,9			
overlap: 5	5. $P(\text{odd or multiple of 5})$ $\frac{6}{12} + \frac{2}{12} - \frac{1}{12} = \frac{7}{12}$	6. $P(\text{less than 5 or greater than 9})$ $\frac{4}{12} + \frac{3}{12} = \frac{7}{12}$	no overlap			
Overlap: 2,4,6	7. $P(\text{even or less than 8})$ $\frac{10}{12} + \frac{7}{12} - \frac{3}{12} = \frac{10}{12} = \frac{5}{6}$	8. $P(\text{multiple of 2 or multiple of 3})$ $\frac{6}{12} + \frac{4}{12} - \frac{2}{12} = \frac{8}{12} = \frac{2}{3}$	overlap:			
overlap: 5, 7, 9,11	9. $P(\text{odd or greater than 4})$ $\frac{6}{12} + \frac{8}{12} - \frac{4}{12} = \frac{10}{12} = \frac{5}{6}$	10. <i>P</i> (multiple of 5 or multiple of 2)	overlap:			

You roll a red number cube and a blue number cube. Find each probability. Independent

1. P(red 2 and blue 2)	2. <i>P</i> (red odd and blue even)
$\frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$	$\frac{3}{6} \cdot \frac{3}{6} = \frac{9}{36} = \frac{1}{4}$
3. P(red greater than 2 and blue 4)	4. P(red odd and blue less than 4)
4.6=4=4	$\frac{3}{6} \cdot \frac{3}{6} = \frac{9}{36} = \frac{1}{4}$
5. P(red greater than 4 and blue greater than 3 $\frac{2}{6} \cdot \frac{3}{6} = \frac{6}{36} = \frac{1}{6}$	6. $P(\text{red 6 and blue even})$ $\frac{1}{6} \cdot \frac{3}{6} = \frac{3}{36} = \frac{1}{12}$
7. $P(\text{red 1 or 2 and blue 5 or 6})$ $\frac{\text{Red}}{(b+b)} \circ \left(\frac{b}{b+b}\right) = b$	<u>Red</u> <u>Bine</u> = $\frac{4}{36} = \frac{1}{9}$

You choose a marble at random from a bag containing 3 blue marbles, 5 red marbles, and 2 green marbles. You replace the marble and then choose again. Find each probability. Independent

1. P(both blue)	2. P(both red)	3. P(blue then green)	
339	5 5 25 1	3263	
10 10 100	10 10 100 4	10 10 100 90	
4. P(red them blue)	5. P(green then red)	6. P(both green)	
5 3 K 3	2 5 10	2 2 4 1	
2			
10 10 100 20	10 10 10 10	10 10 100 25	

You choose a tile at random from a bag containing 2 tiles with X, 6 tiles with Y, and 4 tiles with Z. You pick a second tile without replacing the first. Find each probability.

7. <i>P</i> (X then Y)	8. P(both Y)	9. <i>P</i> (Y then X)		
$\frac{2}{12}$, $\frac{6}{11} = \frac{12}{132} = \frac{1}{11}$	$\frac{6.5}{12} = \frac{30}{132} = \frac{5}{22}$	6.2 = 132 = 1		
10. <i>P</i> (<i>Z</i> then <i>X</i>)	11. P(both Z)	12. <i>P</i> (Y then Z)		
$\frac{4}{12} \cdot \frac{2}{11} = \frac{8}{132} = \frac{2}{33}$	$\frac{4}{12}$, $\frac{3}{11} = \frac{12}{132} = \frac{1}{11}$	$\frac{6}{12}$. $\frac{4}{11} = \frac{24}{132} = \frac{2}{11}$		

13. There are 12 girls and 14 boys in math class. The teacher puts the names of students in a hat and randomly picks one name. Then the teacher picks another name without replacing the first. What is the probability that both students picked are boys?

$$\frac{14}{26}$$
, $\frac{13}{25}$ = $\frac{182}{650}$ = $\frac{7}{25}$