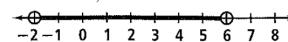
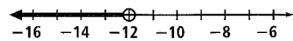
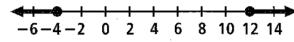
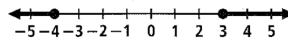

1a. yes **1b.** yes **1c.** no **2a.** no **2b.** yes **2c.** yes **3.** x < 25 **4.** x > 12 **5.** $x \ge 3.50$ **6.** x > 10

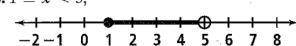

7. x > -2 **8.** $x \le 3$ **9.** $x \ge -1.5$ **10.** $x > \frac{1}{2}$ **11.** x > -36;


12. $y \le 4$;

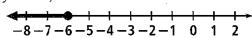

13. -2 < h < 6;


14. a < -12:

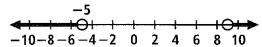
15. $a \ge 12$ or $a \le -4$;

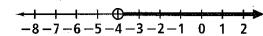


16. $m \leq -4$ or $m \geq 3$;



17. $2 \le t < 7$;


18. $1 \le x < 5$;


19. $y \leq -6$;

20. r > 9 or r < -5;

21. k > -4;

22. $z \ge 5$;

23. x < 14;

24. y < -2;

25. -1 < d < 5;

26. y > 7 **27.** $x \le -5$ **28.** $a > \frac{10}{3}$ **29.** $x \ge -1.2$

30. Subtract 4 from each side to get |x| < 5. Remove absolute values signs by writing as the compound inequality x < 5 and x > -5. **31.** $x \ge 1$ or $x \le -2$

32. -3 < x < 1 **33.** x = 8 or x = -2

34.
$$x = 4$$
 or $x = -\frac{4}{3}$ **35.** $c = 4$ or $c = -\frac{18}{5}$

36. y = 2 or y = 14

37. No such situation exists; inequality is false.

38. $15x - 30 \ge 40$; 5 lawns

39. 6x - 75 > 135; 36 bird feeders

40. $|x - 13.05| \le 0.015$; between 13.035 and 13.065 mm, inclusive **41.** B