Linear Equations Word Problems

1. One of your friends gives you $\$ 10$ for a charity walkathon. Another friend gives you an amount per mile. After 5 miles, you have raised $\$ 13.50$. Write an equation that represents the amount of money y you have raised after x miles.
2. A boa constrictor is 18 inches long at birth and grows 8 inches per year. Write an equation that represents the length y (in feet) of a boa constrictor that is x years old.
3. You are parasailing and are being pulled down at a rate of 10 feet per second. After 2 seconds, you are 25 feet above the boar.
a. Write the equation that represents your height y (in feet) above the boat after x seconds.
b. At what height were you parasailing before being pulled in?
4. Your class is taking a trip to the public library. You can travel in small and large vans. A small van holds 8 people and a large van holds 12 people. Your class has 144 people.
a. Write an equation that models the possible combinations of small vans and large vans that your class could fill.
b. Give three possible combinations of vans.
5. A band is performing at an auditorium for a fee of $\$ 1500$. In addition, the band receives 30% of each $\$ 20$ ticket sold. The maximum capacity of the auditorium is 800 people.
a. Write an equation that represents the band's revenue R when x tickets are sold.
b. The band needs $\$ 5000$ for new equipment. How many tickets must be sold for the band to earn enough money to buy the new equipment?
6. At $0^{\circ} \mathrm{C}$, the volume of gas is 22 liters. For each degree the temperature T (in degrees Celsius) increases, volume (in liters) of the gas increases by $\frac{2}{25}$. Write an equation that represents the volume of the gas in terms of the temperature.
7. The initial fee to have a website set up using a server is $\$ 48$. It costs $\$ 44$ a month to maintain the website.
a. Write an equation that gives the total cost of setting up and maintaining a website as a function of the number of months it is maintained.
b. Find the total cost of setting up and maintaining the website for 6 months.
8. A dog kennel charges $\$ 20$ per night to board your dog. You can also have a doggie treat delivered to your dog for $\$ 5$.
a. Write an equation that models the possible combinations of nights at the kennel and number of doggie treats that you can buy for $\$ 100$.
b. What do the intercepts mean in this situation?
9. A camera shop charges $\$ 3.99$ for an enlargement of a photograph. Enlargements can be delivered for a charge of $\$ 1.49$ per order.
a. Write an equation that gives the total cost of an order with delivery as a function of the number of enlargements
b. Find the total cost of ordering 8 photograph enlargements with delivery.
10. After it is purchased, the value of a new car decreases $\$ 4000$ each year. After 3 years, the car is worth $\$ 18,000$.
a. Write an equation that represents the value (in dollars) of the car x years after it is purchased.
b. What was the original value of the car?
11. A 100-point test has x questions worth 2 points apiece and y questions worth 4 points apiece.
a. Write an equation that describes all possible numbers of questions that may be on the test.
b. If you have 24 questions worth 4 points apiece, how many questions will be worth 2 points apiece?
12. Your family spends $\$ 30$ for tickets to an aquarium and $\$ 3$ per hour for parking.
a. Write an equation that gives the total cost of your family's aquarium visit as a function of the number of hours that you are there.
b. How many hours can you stay at the aquarium if you only have $\$ 50$ to spend for the day?
13. You water the plants in our classroom at a constant rate. After 5 seconds, your watering can contains 58 ounces of water. 15 seconds later, the can contains 28 ounces of water.
a. Write an equation that represents the amount y (in ounces) of water in the can after x seconds.
b. How much water was in the can when you started watering the plants?
c. When is the watering can empty?
14. Louise has $\$ 36$ in five-dollar bills and singles.
a. Write an equation that describes the number of each type of bill she has.
b. If Louise has 2 five-dollar bills, how many singles does she have?
15. The annual household cost of telephone service in the United States increased at a relatively constant rate of $\$ 27.80$ per year from 1981 to 2001. In 2001, the annual household cost of telephone service was $\$ 914$.
a. Write an equation that gives the annual household cost of telephone service as a function of the number of years since 1981 (Hint: $x=$ time since $1981 ; 1981$ would be $x=0$)
b. Find the household cost of telephone service in the year you were born.
16. The Ray family bought 4 sandwiches and 3 salads. They spent $\$ 24$. Let x be the cost of a sandwich and y be the cost of a salad.
a. Write an equation that describes the costs of sandwiches and salads.
b. If each sandwich costs $\$ 3.75$, how much did each salad cost?
17. From 1990 to 2001, the number of airports in the United States increased at a relatively constant rate of 175 airports per year. There were 19,306 airports in the United States in 2001.
a. Write an equation that gives the number of US airports as a function of a number of years since 1990.
b. Find the year in which the number of US airports reached 19,200.
18. At age 12, Patrick weighed 43 kg ; at age 14 he weighed 50 kg . Patrick's age and weight are related.
a. Find a linear equation relative Patrick's weight to his age.
b. Use your equation to find out Patrick's age when he weighed 38 kg .
19. The store at which Andy usually shops is having a sale. Roast beef is $\$ 4$ a pound and shrimp costs $\$ 10$ a pound.
a. Write an equation to describe different possible combinations of Roast beef and shrimp that he can buy for $\$ 96$.
b. What is the greatest amount of shrimp he can buy?
20. The first month a company was open, it had two employees. At the end of 6 months, the company had 10 employees.
a. If the number of employees increases at a steady rate, write an equation that illustrates this situation.
b. How many people will be employed by the company after 1 year?

Answers:

1. $X=\#$ miles, $y=$ amount of $\$$
y-intercept $=10(0,10)$
$(5,13.50)$
$m=\frac{3.5}{5}=\$ 0.7$ per mile
$y-13.50=.7(x-5)$ or $y=0.7 x+10$
2. $X=$ years, $y=$ inches
$\mathrm{m}=8$ inches per year
$\mathrm{b}=18$ inches at birth
$y=8 x+18$
3. $X=$ seconds, $y=$ height in feet
$\mathrm{M}=-10$ feet per second
$(2,25)$
a. $y-25=-10(x-2)$
b. $y-25=-10(x-2)$
$y-25=-10 x+20$
$y=-10 x+45$
You were at a height of 45 feet before being pulled in.
4. $X=$ \#small vans, $y=$ \# large vans
small van $=8$ people per van
large van $=12$ people per van
total $=144$
a. $8 x+12 y=144$
b. A few examples:
c. $8 x+12 y=144$

$$
\begin{aligned}
& 8 x+12 y=144 \\
& 8(9)+12 y=144 \\
& 72+12 y=144 \\
& 12 y=72 \\
& y=6
\end{aligned}
$$

$$
8 x+12 y=144
$$

$8(3)+12 y=144$
$8(6)+12 y=144$
$24+12 y=144$

3 small and
10 large

9 small and
6 large
$48+12 y=144$
$12 y=96$
$y=8$
6 small and
8 large
5. $\quad X=\#$ tickets, $R=$ revenue
y - intercept $=\$ 1500$
$\mathrm{m}=30 \%$ of $\$ 20=6$
a. $R=6 x+1500$
b. $5000=6 x+1500$
$3500=6 x$
$583 . \overline{3}=x$
The band needs to sell at least 584 tickets to buy the new equipment
6. $X=$ temperature, $y=$ volume
$(0,22)$
$\mathrm{M}=\frac{2}{25}$
$y=\frac{2}{25} x+22$
7. $X=\#$ months, $y=$ total cost
y-intercept $=48$
$\mathrm{m}=\$ 44$ per month
a. $y=44 x+48$
b. $y=44(6)+48$
$y=264+48$
$y=312$
The cost of maintaining the website for 6 months if $\$ 312$.
8. $X=\#$ nights, $y=\#$ treats

Nights $=\$ 20$ per night
Treats $=\$ 5$ per treat
a. Total $=\$ 100$
$20 x+5 y=100$
b. X-intercept is how many nights can be bought for $\$ 100$ with no treats Y-intercept is how many treats can be bought for $\$ 100$ with no nights
9. $X=\#$ of enlargements, $y=$ total cost
y - intercept $=\$ 3.99$
$\mathrm{m}=\$ 1.49$ per order
a. $y=1.49 x+3.99$
b. $y=1.49(8)+3.99$
$y=11.92+3.99$
$y=15.91$
The total cost of 8 enlargements with delivery is $\$ 15.91$
10. $X=$ years, $y=$ value of car
$M=-\$ 4000$ per year
(3, 18,000)
a. $y-18000=-4000(x-3)$
b. $y-18000=-4000(x-3)$
$y-18000=-4000 x+12000$
$y=-4000 x+30000$
The original value of the car is $\$ 30,000$
11. $X=\# 2$ point questions, $y=\# 4$ point questions

2 point questions $=2$ points per question
4 point questions $=4$ points per question
Total $=100$ points
a. $2 x+4 y=100$
b. $2 x+4(24)=100$
$2 x+96=100$
$2 x=4$
$x=2$
If there are 244 point questions, there will be 2 2-point questions
12. $X=$ \# hours, $y=$ total cost
y-intercept $=\$ 30$
$\mathrm{m}=\$ 3$ per hour
a. $y=3 x+30$
b. $50=3 x+30$
$20=3 x$
$6 . \overline{6}=x$
For only $\$ 50$, you can stay no longer than 6 hours and 40 minutes.
13. $X=$ seconds, $y=$ water ounces in can
$(5,58)$
$(20,28)$
a. $\quad \mathrm{M}=-6$
$y-58=-6(x-5)$
b. $y-58=-6 x+30$
$y=-6 x+88$
When I started watering, there was 88 ounces in the can.
c. $0=-6 x+88$
$-88=-6 x$
$14 . \overline{6}=x$
The can is empty after about 14.7 seconds.
14. $X=\# 5$ dollar bills, $y=\# 1$ dollar bills

5 dollar bills $=\$ 5$ per bill

1 dollar bills = $\$ 1$ per bill
Total $=\$ 36$
a. $5 x+y=36$
b. $5(2)+y=36$
$10+y=36$
$y=26$
If Louise has $2 \$ 5$ bills, then she has $\$ 26$ singles.
15. $X=$ years single 1981, $y=$ cost of telephone service
$\mathrm{M}=\$ 27.80$ per year
$(20,914)$
a. $y-914=27.80(x-20)$
b. $y-914=27.80(2-20)$
$y-914=27.80(-18)$
$y-914=-500.4$
$y=413.5$
The cost of telephone service in 1983 was $\$ 413.50$
16. $X=$ cost of a sandwich, $y=$ cost of a salad

Total $=\$ 24$
a. $4 x+2 y=24$
b. $4(3.75)+2 y=24$
$15+2 y=24$
$2 y=9$
$y=4.5$
If a sandwich costs $\$ 3.75$, then a salad costs $\$ 4.50$.
17. $X=$ years since 1990, $y=\#$ US airports
$\mathrm{M}=175$ airports per year
$(11,19306)$
a. $y-19306=175(x-11)$
b. $19200-19306=175(x-11)$
$-106=175 x-1925$
$1819=175 x$
$10.39 \approx x$
There were 19,200 airports sometime between 2000 and 2001.
18. $X=$ Patrick's age, $y=$ Patrick's height $(12,43)$
$(14,50)$
a. $\mathrm{M}=3.5$
$y-50=3.5(x-14)$
b. $38-50=3.5(x-14)$
$-12=3.5 x-49$
$37=3.5 x$
$10.57 \approx x$
Patrick was about $101 / 2$ when he weighed 38 kg .
19. $X=$ pounds of roast beef, $y=$ pounds of shrimp

Roast beef $=\$ 4$ per pound
Shrimp $=\$ 10$ per pound
a. Total $\$ 96$
$4 x+10 y=96$
b. $4(0)+10 y=96$
$10 y=96$
$y=9.6$
The most shrimp Andy can buy is 9.6 lbs
20. $X=$ \# months, $y=$ \# employees
y-intercept - $2(0,2)$
$(6,10)$
a. $\mathrm{M}=\frac{4}{3}$ employees per month
b. $y=\frac{4}{3} x+2$
$y=\frac{4}{3}(12)+2$
$y=16+2$
$y=18$
There will be 18 employees employed after 1 year.

